Skip to main content
|

Anti-COVID-19 nasal spray ‘ready for use in humans’

A nasal spray that can provide effective protection against the COVID-19 virus has been developed by researchers at the University of Birmingham based here in the ITM, using materials already cleared for use in humans.

A team in the ITM’s Healthcare Technologies Institute formulated the spray using compounds already widely approved by regulatory bodies in the UK, Europe and the US. The materials are already widely used in medical devices, medicines and even food products.

This means that the normal complex procedures to take a new product to market are greatly simplified, so the spray could be commercially available very quickly.

A pre-print (not yet peer-reviewed) study describes cell culture experiments designed to test the ability of the solution to inhibit infection. They found cell-virus cultures inhibited  the infection up to 48 hours after being treated with the solution and when diluted many times.

The spray is composed of two polysaccharide polymers. The first, an antiviral agent called carrageenan, is commonly used in foods as a thickening agent, while the second a solution  called gellan, was selected for its ability to stick to cells inside the nose.

The gellan, is an important component because it has the ability to be sprayed into fine droplets inside the nasal cavity, where it can cover the surface evenly, and stay at the delivery site, rather than sliding downwards and out of the nose.

Lead author on the paper, Dr Richard Moakes, said: “This spray is made from readily available products that are already being used in food products and medicines and we purposely built these conditions into our design process. It means that, with the right partners, we could start mass production within  weeks.”

The spray works in two primary ways. Firstly, it catches and coats the virus inside the nose, from where it can be eliminated via the usual routes – either nose-blowing or swallowing. Secondly, because the virus is encapsulated in the spray’s viscous coating, it is prevented from being uptaken by the body. That means it will reduce the viral load in the body, but also even if virus particles are passed on to another person via a sneeze or cough, that person is less likely to be infected by active virus particles.

Co-author Professor Liam Grover, says: “Although our noses filter 1000s of litres of air each day, there is not much protection from infection, and most airborne viruses are transmitted via the nasal passage. The spray we have formulated delivers that protection but can also prevent the virus being passed from person to person.”

The team believe the spray could be particularly useful in areas where crowding is less avoidable, such as aeroplanes or classrooms. Regular application of the spray could significantly reduce disease transmission.

“Products like these don’t replace existing measures such as mask wearing and handwashing, which will continue to be vital to preventing the spread of the virus,” adds Dr Moakes. “What this spray will do, however, is add a second layer of protection to prevent and slow virus transmission.”


More updates

09/04/2021
Stroke risk for patients with traumatic brain injuries is at its highest in the four months following injury and remains significant for up to five years post-injury, finds a new systematic review led by a team at the University of Birmingham. Traumatic brain injury (TBI) is a global health problem affecting over 60 million people a year worldwide. Incidences of TBI are rising due to a range of…
24/03/2021
A study of top-flight UK rugby players – carried out by the University of Birmingham in collaboration with the Rugby Football Union (RFU), Premiership Rugby, and Marker Diagnostics – has identified a method of accurately diagnosing concussion using saliva, paving the way for the first non-invasive clinical test for concussion for use in sport and other settings. Following the team’s previous re…
23/02/2021
A digital remote care solution including a mobile phone app is helping Covid-19 patients manage their symptoms at home after being developed with the support the West Midlands Academic Health Science Network (WMAHSN). The app developed by medical software company, Dignio, has been implemented by Dudley CCG and allows patients stay at home safely, thus avoiding unnecessary admissions to hospital…
18/02/2021
Their Royal Highnesses The Prince of Wales and The Duchess of Cornwall visited the COVID-19 vaccination centre for University Hospitals Birmingham NHS Foundation Trust (UHB) staff on February 17 2021. Their Royal Highnesses, joined by The Right Honourable Matt Hancock MP, Secretary of State for Health and Social Care, visited the hub here at the Institute of Translational Medicine with key memb…
11/12/2020
An international team of scientists and engineers have been awarded a grant of £768K by UKRI as part of the Newton Fund’s Agile Response Call to develop high performance, low cost ventilators for use in low to middle income countries, it has been announced today. Prompted by a shortage of ventilators in low income countries highlighted by the COVID-19 pandemic, the HPLV project aims to reengin…